Large Families of Optimal Two-Dimensional Optical Orthogonal Codes
نویسندگان
چکیده
Nine new 2-D OOCs are presented here, all sharing the common feature of a code size that is much larger in relation to the number of time slots than those of constructions appearing previously in the literature. Each of these constructions is either optimal or asymptotically optimal with respect to either the original Johnson bound or else a non-binary version of the Johnson bound introduced in this paper. The first 5 codes are constructed using polynomials over finite fields the first construction is optimal while the remaining 4 are asymptotically optimal. The next two codes are constructed using rational functions in place of polynomials and these are asymptotically optimal. The last two codes, also asymptotically optimal, are constructed by composing two of the above codes with a constant weight binary code. Also presented, is a three-dimensional OOC that exploits the polarization dimension. Finally, phase-encoded optical CDMA is considered and construction of two efficient codes are provided.
منابع مشابه
2-dimensional Optical Orthogonal Codes from Singer Groups
We present several new families of (Λ × T,w, λ) (2-D) wavelength/time optical orthogonal codes (2D-OOCs) with λ = 1, 2. All families presented are either optimal with respect to the Johnson bound (J-optimal) or are asymptotically optimal. The codes presented have more flexible dimensions and weight than the J-optimal families appearing in the literature. The constructions are based on certain p...
متن کاملOptical orthogonal codes: Their bounds and new optimal constructions
A (v, k, λa, λc) optical orthogonal code C is a family of (0, 1)-sequences of length v and weight k satisfying the following two correlation properties: (1) ∑ 0≤t≤v−1xtxt+i ≤ λa for any x = (x0, x1, . . . , xv−1) and any integer i 6≡ 0 mod v; and (2) ∑ 0≤t≤v−1xtyt+i ≤ λb for any x = (x0, x1, . . . , xv−1), y = (y0, y1, . . . , yv−1) with x 6= y, and any integer i, where subscripts are taken mod...
متن کامل3-Dimensional Optical Orthogonal Codes with Ideal Autocorrelation-Bounds and Optimal Constructions
Several new constructions of 3-dimensional optical orthogonal codes are presented here. In each case the codes have ideal autocorrelation λa = 0, and in all but one case a cross correlation of λc = 1. All codes produced are optimal with respect to the applicable Johnson bound either presented or developed here. Thus, on one hand the codes are as large as possible, and on the other, the bound(s)...
متن کاملOptical Orthogonal Codes from Singer Groups
We construct some new families of optical orthogonal codes that are asymptotically optimal. In particular, for any prescribed value of λ, we construct infinite families of (n, w, λ)-OOCs that in each case are asymptotically optimal. Our constructions rely on various techniques in finite projective spaces involving normal rational curves and Singer groups. These constructions generalize and impr...
متن کاملOptimal Three-Dimensional Optical Orthogonal Codes and Related Combinatorial Designs
Using channel polarization technique in optical code-division multiple access, we can spread optical pulses in the spatial domain, in addition to the time and frequency domains. The pattern of transmitting optical pulses in these three dimensions are specified by the codewords of a three-dimensional optical orthogonal codes (3-D OOC). In this work, combinatorial designs related to optimal 3-D O...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/0911.0143 شماره
صفحات -
تاریخ انتشار 2009